所以改变传统设计方法,以数学计算为理论基础,利用电子计算机的高速计算,对多种可行性方案进行流体仿真计算,求得佳匹配的风机结构参数,既可克服常规设计方法不能使设计过程数据化的弊端,同时可减轻设计劳动强度,提高设计效率,减少实验成本和实验时间。
目前,国内外对多翼离心风机的研究主要集中在风机结构参数的优化实验研究、风机噪声机理及治理的研究和风机过内部流场的数值模拟研究等几个方面。多翼离心风机是离心风机的一种,也是常见的一种通风机,因为该种风机采用的叶轮为多翼式风叶,故而通俗形象地称为多翼离心风机,其应用非常广泛。多翼式离心风机一般由叶轮、机壳、集流器、电机和传动件(如主轴、带轮、轴承、三角带等)组成。
多翼式离心风机实质是一种变流量恒压装置。因其工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。当转速一定时,离心风机的压力量理论曲线应是一条直线。由于内部损失,实际特性曲线是弯曲的。
性能特点:多翼式离心风机实质是一种变流量恒压装置。因其工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 当转速一定时,离心风机的压力-流量理论曲线应是一条直线。由于内部损失,实际特性曲线是弯曲的。离心风机中所产生的压力受到进气温度或密度变化的较大影响。对一个给定的进气量,高进气温度(空气密度低)时产生的压力低。对于一条给定的压力与流量特性曲线,就有一条功率与流量特性曲线。当鼓风机以恒速运行时,对于一个给定的流量,所需的功率随进气温度的降低而升高。
多翼离心风机的设计计算包括结构设计计算、空气动力设计计算和强度计算等多翼离心风机的空气动力设计计算。为满足所需要的流量、全压及其它要求,所进行的通风机流道几何尺寸的计算,称之为空气动力设计计算。设计过程中需要遵循以下几点原则 。满足产品空气性能设计要求,多翼离心风机通过叶轮旋转,获得一定的流量和风压,为产品提供动力,实现产品排烟、送气等功能,因此满足产品空气性能设计要求是多翼离心风机设计过程的首要原则。
平均效率要高,多翼离心风机在管网工作时,其工况点不一定落在额定工况上,管网阻力改变非常频繁,工况也时常发生变化,如仅仅把风机的额定工况点作为评定标准是不恰当的,而以平均效率做为评定风机的经济性指标更加合理。